Transport Processes at Taylor Bubbles in Vertical Channels
BücherAngebote / Angebote:
Gas / liquid contact apparatuses are widely used in chemical, biochemical or pharmaceutical industry to provide and transfer gas species as reactant from the gaseous phase to pre-dissolved reactants in the liquid phase enabling a preferred reaction. The global and local transport are complex interlinked processes and therefore in practice in reactor design industry, mostly empirically correlated. For a secure control of the overall process and a more efficient reactor design, the local transport processes at gas / liquid interfaces need to be investigated in complexity reduced systems to be understood. Elongated bubbles, Taylor bubbles, in vertical channels 5.5 < D < 8 mm overcome the problem of dynamic shape deformation, complex 3D rise trajectories and they have a volume independent rise velocity, which make them the ideal experiment for reliable and reproducible investigations. Detailed optical measurements of global and local processes via high-speed Shadowgraphy, 2D2C PIV and p-2D LIF give new insights into the dependency of local bubble shape and global terminal rise velocity, establish a Sherwood correlation of shrinking CO2 bubbles in various channel sizes and shows the coupling of local transport phenomena at the bubble interface and the mixing in the wake region.
Folgt in ca. 10 Arbeitstagen